If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-100x-10=0
a = 7; b = -100; c = -10;
Δ = b2-4ac
Δ = -1002-4·7·(-10)
Δ = 10280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10280}=\sqrt{4*2570}=\sqrt{4}*\sqrt{2570}=2\sqrt{2570}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-2\sqrt{2570}}{2*7}=\frac{100-2\sqrt{2570}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+2\sqrt{2570}}{2*7}=\frac{100+2\sqrt{2570}}{14} $
| b/5+1/2=19 | | 117+17x=41 | | (x+0.07x)+0.2(x+0.07x)=31 | | 9=h+8.6 | | 4(x+3)+4=5(x+5)-7 | | x+2x+2(2x)=100 | | 7(x+1)-6=3x+4(-1+x) | | 8x-9x-6+12x=12 | | 2(x-3)=x=3 | | 4.3p–32.24=127.9214.3p–32.24+32.24=127.92+32.2414.3p=160.16 | | 14.3p–32.24=127.9214.3p–32.24+32.24=127.92+32.2414.3p=160.16 | | (3x+68)/8=x+6 | | 4u^2-29u+25=0 | | V=x(22-2x)(14-2x) | | 12x+3=26x-4 | | -0.5(x–4)=1.5 | | x2+19x+48=0 | | x^2+19x+72=0 | | -6(k+1)-k-6=-7(k+3)+9 | | (9-x)(7x+4)=0 | | 15(q-4)-2=4 | | 3d-d+15=41 | | 72x+436=96x+408 | | 5(x+9)–23=42 | | x^2-x-21/x=18,75 | | (2x+1)^2-(3-x)^2=0 | | -5+3∆4c=4 | | 6x^2=1600 | | 4^2m+12m+5=0 | | 3x+15=1x+30 | | x-2/14=2/7 | | -5+3/4c=4 |